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Abstract

This study presents a novel force operator approach to investigate the Casimir
effect mediated by massless Dirac fermions within one-dimensional systems, focus-
ing on its applications such as carbon nanotubes. By embedding two finite square
barriers in a background of one-dimensional massless Dirac fermions, we calculate
the Casimir force as a function of distance between the barriers. Our approach
successfully eliminates ultraviolet divergences even when considering scatterers of
zero width and infinite potential strength, offering a significant improvement over
traditional energy-based methods. The interaction energy and force are shown to
scale with the inverse square of the distance between scatterers, consistent with
classical Casimir effects but distinctly tunable via the relative spinor polarizations
of the scatterers. This tunability allows for the force to range from attractive to
repulsive, providing a new way to control interactions at the nanoscale. Our re-
sults also demonstrate that the one-dimensional Casimir interaction dominates over
traditional van der Waals forces for charge-neutral species within these systems.

1 Introduction

The attraction between two parallel plates that are completely conducting and uncharged
when they are confined in a vacuum is known as the Casimir effect. This phenomenon
was first predicted by the Dutch physicist Hendrik B. G. Casimir in a 1948 publication.
He defined it as the difference in pressure between two sides of a plate due to variations
in the vacuum fluctuations between and within the plates.
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FIGURE 1: Casimir force between two parallel plates. There is an attractive force
acting on both plates because the pressure between the two is less than the pressure
exerted from the outside. [source:self, BTEX[2)]]

In his article titled ‘On the attraction between two perfectly conducting plates’[2] |
H.B.G Casimir presented the result that, for two perfectly conducting plates at a distance

a, microns apart, for Force per cm?, we find:

72 1 0.013 ,
- C%a_ﬁ:_ al dyne/cm (1)

F=

This implies, two 1 x 1 plates separated by 1um experience a force F' = —0.013dyne.
This force is comparable to the Coulomb force on the electron in the Hydrogen atom,



thereby emphasizing the importance of Casimir interaction at an atomic level. We will
understand and derive this equation in coming sections.

1.1 Zero Point Energy

Wave equation of Electric field in vacuum (E) can be given from Maxwell’s Equations[4]:
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This solution of this equation can be written sum of mode functions [5], v,,(z) satis-
fying the condition:
2
V(1) = —k2 v (2) (k2 = %)
V vm(x) =0
n X vp(x) =0
Here n is the unit vector normal to the conducting surface as tangential component
must vanish (Dirichlet boundary condition). Upon choosing orthonormal modes:

= Z S ()vm(2)

replace in Equation , to get:
2

e En(6) + IR fn(£) = 0

Which is an equation of Harmonic Oscillator with angular frequency w,, = ck,,. Mangetic
Field B will expand to similar form:

Zh )V X vp(2)

with:
d

(1) — cf(t) =0
leading to:
d2
dt?
This analysis of normal modes shows, EM fields are nothing but infinite independent
harmonic oscillators.

B (1) + k2 hn (1) = 0

H= 817T/(E2+32)d
= — Z fnr fm/Vm/I/de + — Z Pt oy /(V X U ) (V X vy, )dx

Zf +k2h2



Which is similar to Simple Harmonic Oscillator:
1
Hosc = Z 5(1312 + (-"-)12X12)
— fm() X P,
27 70" 27

Upon quantization of Electromagnetic field [4], one can write the Hamiltonian as sum of
Simple Harmonic Oscillator:

P, =

1
= hw(ala; + = 3
W= Y ol + ) 3
where:
alny =vn+1|n+1) (creation operator)
a;|n) =+v/n|n—1) (annihilation operator)

Applying a; on |0), we can write it’s ground state as a:

where, no more photons can be annihilated, as there are none. Thus, we now find
expectation energy on ground state as:

(E) = (0|H]0) = 0|Zhw ala; + )zézmi:%/omhwg(w)dw

Where ¢(w) is density of the state. Hence, this is sum of many uncoupled harmonic
oscillators, each with energy %hw This results in a calculation of infinite zero-point energy
in any finite volume; this is one reason renormalization is needed to make sense of quantum
field theories. Under ordinary conditions this infinity is not physically measurable, as it
is present at each point in space. Only upon imposing boundary conditions, do we see it
in effect.

1.2 Deriving Casimir force in 3D

Consider a sizable cavity with dimensions L x L x L, enclosed by conducting walls. A
conducting plate is introduced at a distance R parallel to one of the xy walls, with R
significantly smaller than L. We aim to compute the energy variation caused by the
presence of the conducting plate at z = R:

AFE=FEr+ FE_r—Ey

The diagram below illustrates the setup, depicting a large cavity with a plate inserted
near one end at a distance R.

The conducting walls enforce Dirichlet boundary conditions on the electromagnetic
modes within the cavity, demanding the vanishing of the tangential component of the
electromagnetic field. Solving the wave equation with these conditions reveals quantized
values for the x, y, and z components of the wavevectors k, defined as:
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In vacuum, the angular frequency w relates to the wave number k by the speed of
light c:

w=ck

This allows us to express the zero-point energy of the field as:
1
(E) = 57@02 K2+ k2 + k2 (4)

Given the assumption of a large cavity (R < L), we replace the summation with an
integral to obtain the energies:

3
_ 2 /// —hc,/k2+k2 k2 dk, dk, dk.
2L2L
By g =R /// —hc,/k§+k§+k§dkxdk:ydkz

2, L 2
Ep= —hC\/k;? + 2 T) dk, dk.

Here, n = n,, and 0,, is defined as 1 for n > 0, and % for n = 0, reflecting the
different polarization states of k. This notation simplifies the subsequent use of the
Euler-Maclaurin formula.

Both the summation and integrals diverge, necessitating the introduction of a smooth
cutoff function, f(k/k.), satisfying:

k) —> 1, k <k

f(k/k.) =0, k> k.
This is justified by the notion that each conductor has a plasma frequency wf, = Tgeqjo,
representing the minimum oscillation frequency supported by the electrons in the conduc-
tor. Below this frequency, the conductor behaves as a reactive medium, reflecting elec-
tromagnetic waves and enforcing the discussed boundary conditions. Above the plasma
frequency, the conductor becomes transparent to photons, rendering the boundary con-
ditions invalid.
The energy difference equation now becomes:




L | & R [
AE = he> LZ_O 0.9 (%T) _ ;/0 g(k.) de]

// ( ) k2+k2+k2dk dk,

Simplifying g(k.) through transformations, we obtain:

where

7 F(n)
4R3

Py = [ ff( f)

This leads to the final expression for the energy difference:

i 0, F (n / F(n) dn]

The difference between the summation and the integral is approximated using the
Euler-Maclaurin formula:

g(k.) =

where

th2 2
 4R3

AFE

3 h 1 / 1 "
nz;@nF(n)—/o F(n)dn:_EF(O)—F%F (0) —

With F’(n), we find:

F'(n) = —2n2f <Z£)

resulting in:

her? L2

AE =2 2
720 R?

The force per em? is then determined to be:

_ 10AE ke 7w 5)
12 QR 240 R4

This yields the desired result as initially stated.

1.3 Deriving Casimir force in 1D

Now we proceed with deriving casimir force in 1-D[8]. We model our 1-D Lattice as
shown in Figuref2|
We begin with taking a continuum limit, we let N — oo and d — 0. w, in this limit
in 1-D is given by:
Wy = —— (6)



FIGURE 2: Discrete scalar field bounded by end plates. The movable plate at distance
x experiences an attractive force F towards the nearest plate. [8]

where r = 1,2, 3, ...00. Using Eq, we write the zero point energy in gap of length x:

Un) = Xn: %m}
r=1

The @)
Ux) = 5y ; r
The zero point energy of the system is given by:
Ulx,l) =U(x) +U(l — x) (8)

In the limit [ >> =z, we obtain an infinite force which must be regulated using zeta
function:

o AU _mhes
dr  2x? p—
1
14+2+3+..— T
Thus, we obtain the final expression for force as:
whe
F== 2412 9)

2 Theoretical Framework

The interaction between scatterers in a one-dimensional electron gas, particularly involv-
ing massless Dirac fermions, requires an understanding of the modified quantum vacuum
states.

2.1 Hamiltonian

We start off by writing the Hamiltonian for the massless Dirac fermions :

(—z'axa% +V(x) - E) Uy(z) =0 (10)

This equation is massless limit of Dirac equation, for spin half particles, referred
to as Weyl equation.[6] For non-relativistic fermions, the dispersion relation is typically
parabolic, and the Hamiltonian is indeed given by H = % where p, is the momentum
operator along the z direction, m is the mass of the particle and A is the reduced Planck’s
constant. For massless fermions, this dispersion relation is linear and is given by F =

UF| + k’|



The term —iUx% is used instead of %;—;2 (which represents the kinetic energy in
the Schrédinger equation) because we are dealing with massless Dirac fermions. In the
relativistic context described by the Dirac equation, the concept of mass is replaced by
the Fermi velocity (vg), and the kinetic energy term takes on a different form as —z'axa%.
This reflects the linear dispersion relation and relativistic effects characteristic of massless

Dirac fermions.

2.2 General Solution

When the potential V(x) is zero, the eigenstates of the Hamiltonian H, are plane waves
multiplied by two-dimensional spinors. Mathematically, this can be expressed as

Uy (z) = ap®re’™ + B0 _re ™ (11)

Here, oy and f§j represent the amplitudes of the counter propagating waves in each
region and @, correspond to the two possible spin states for the fermion at momentum
ki.e.

(1,F1)
V2r

In this case, the z-component of the spin is quantized, and the two spin states are
orthogonal. The normalization ensures that the total probability density is conserved.

For a fixed chemical potential y = 0, the energy eigenvalues(E) correspond to the
eigenvalues of the Hamiltonian. In the case of massless Dirac fermions, the dispersion
relation is linear, and the energy eigenvalues are given by E = —|k|. The negative
energy states represent filled states, forming what’s known as the Dirac sea with 1, =

(1, F1)/v2.

() = (12)

2.3 Potential

The general form of potential V(z) in Eq is given by V(z) = V,(2) + V - & where
the second term corresponds to a vector potential acting on the spin degrees of freedom.

In order to simplify our analysis, we claim that we can only focus on the potentials
for which V lies in the y-z plane. We can do so because of the following reasons :

e Gauge Transformation : The o, part of the potential can be eliminated by a
Gauge Transformation given by W(z) — €@ W (x). We can apply the Gauge
transformation to Eq(L0) and carefully choose 6(z) such that o, cancels out, i.e.
@)ooy = g,e@7  This essentially eliminates the o, part of the potential term
while preserving the physical meaning of the Dirac equation.

e Backscattering : Backscattering occurs when particles are scattered backward due
to the potential encountered. In terms of the wavefunction, this means a change
in momentum direction. the scalar potential Vof unlike the vector potential V.g
only affects the amplitude of the wavefunction at a given position, not its direc-
tion. Since it doesn’t couple to the spin degree of freedom, it doesn’t cause any
change in the momentum direction or spin orientation of the particles. Instead,
it just alters the overall magnitude of the wavefunction, essentially just scaling it
by a position-dependent factor. This is why it’s often disregarded in discussions
regarding backscattering in the context of the Dirac equation.
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FIGURE 3: Visualisation of potential[l)]

We consider the effects of the orientation of the potential determined by angle ¢. Thus, a
square barrier potential located between points x; and x5 as show in Figure |3|is written
as :

V(w,¢) = V(9)b(z — 21)6(z — x2) (13)
where V(¢) = Vel7=92g_e~19¢/2 and f(z) is a step function.

2.4 Hellmann-Feynman Theorem

The Hellmann-Feynman theorem is a fundamental result in quantum mechanics that
provides a way to calculate the derivative of the expectation value of an observable with
respect to a parameter in the Hamiltonian. Mathematically, it states:

<¢‘—6H ) w> -2 (14)

o\

Now, in the context of studying the force on a square well scatterer, we choose the
control parameter A to be the average position of the scatterer, z = “Qﬂ, where z; and
x5 are the positions of the ends of the square well. This choice of parameter allows us to
investigate how changes in the position of the scatterer affect the energy of the system.

By taking the ground state average, we compute the expectation value of the force
acting on a rigid barrier due to the square well scatterer. The ground state average
represents the expectation value of the force when the system is in its lowest energy
state, which is often the state of interest in many physical scenarios. In this case, it
allows us to determine the force exerted on the barrier by the potential created by the
square well scatterer.

3 Methodology

The methodology involves calculating the force between finite width square barriers repre-
senting scatterers, with an aim to analyze the Casimir force mediated by one-dimensional
massless Dirac fermions. The approach avoids the traditional complications associated

10



with ultraviolet divergences, employing the Hellmann-Feynman theorem to derive expres-
sions for the force as a function of scatterer separation.

3.1 Applying Hellmann-Feynman Theorem

We start off by applying the Hellmann-Feynman Theorem, Eq for our Hamiltonian.
Firstly we note that the derivative of the Hamiltonian with respect to  represents how
the Hamiltonian changes as the center of the barrier potential shifts. In this case, it’s
given by:
(9H£:L‘) _ 8V§x) (15)
0z 0T

We evaluate the expectation value at the edges of the square potential,i.e. T + 3 and
a

T — 5 as shown in Figure . This gives us:

8H a A~ a a ~ a

(W(z) () = W@+ 5) | V| 8@+ 5) — (@@= 5) |V w@E-5)  (16)

We aim to find the total force by summing the force operator over all states, given
by:

Al

oz (17)

Therefore, Eq gives us the difference between the pressures exerted on the right
and the left sides of the barrier.

Using Eq and Eq and applying V (¢) on @4, gives us:
V(9) Py = Vet Doy (18)

Applying =%/ and e =%/ doesn’t affect ®, as it just represents the rotation in
x axis by an angle +¢/2 which is perpendicular to y-z plane. Action of o, flips the spin
state changing ®; to ®_;. In order to see the action of V(¢) in its full glory, we can
expand the exponential term in matrix format and then apply it.

Now we can finally calculate <\Il(x)"7(¢)‘\ll(x)> using Eq, Eq and Eq as

demonstrated below:

V(o) ¥(x
Note : (¥(x

V(akei(kx+¢ et ﬁke km+¢)q)k)
e—zk:c( ) + 5* zka:( )T
<O+()é Bre —i(2kz+¢) + ap * z(2kw+¢) —|—O>

akﬁzez (2kz+9) + azﬁke—z 2kx+¢))
2

[ ﬂ* i(2kz+¢) ]

~_
— ~

I
Q
%

S
=
&
S~—
<>
—
.
=
\./

(19)
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3.2 Transfer Matrices
We shall define tranfer matrix and then use Eq to obtain «y and (3, as below:

This tranfser matrix helps us define how the wavefunction evolves over the barrier
since x; and xs were defined to be the barrier boundaries. We calculate T by integrating

Eq(10) from z; to z».

9,0 (x) = io, Y(E — V)¥(x)
xro 1 T2 ) R
/xl () d¥(z) = / io,(E—V)dx

x1

We used the fact that 0! = o,. Finally, Integrating, we get:

U(zs) = exp (z / (B — V) dx)) ()

1

The presence of a non-commuting operator, particularly if V(x) varies with x, requires
the use of a path-ordered exponential. This is noted as P,, indicating that the terms in
the exponential must be ordered according to their position along the path from z; to
To. The exact form of the transfer matrix T becomes:

T = Pyexp (z / 0.(E—=V) dw)) (21)

1

Now we proceed by calculating T. In our problem, we have V = (0, sin(¢), cos(¢)) =
oysin(¢) + o,cos(¢) which defines a potential in the y-z plane and is independent of x.
Hence, T becomes:

T = P,exp (z’ax(E — ‘7)(1’2 — $1)>
since 9 — 1 = a,

E —Vecos(p) —iVsin(¢
iVsin(¢)  E+ Veos(
¢

) a

¢)
iVsin(¢) E+ Vcos(9)

E —Vcos(¢p) —iVsin(p)

—aVsin(¢) ia(E + VcoS(¢))] )

T =exp | 10,

T =exp | 1a

T=e | lia(E - Veos(o))  aVsin(e)

Now, inorder to exponentiate the matrix, we need to diagonalise it and then expo-
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nentiate. We find its eigenvalues as d-iaq where ¢ = v/ E2 — V2. Therefore T = S™1DS.

[ gq—iVsin(¢)  q+iVsin(¢)
S = E—Vecos(¢p) E—Vcos(p)
1 1
_ [—iag 0
D= | 0 dagq
__ E—Vcos(¢) 1 iV sin(¢)
S—l _ 2q 2 (1 + q )
| E=Veos(¢) 1 (1 B iVsin(d)))
2q 2 q
[ —iaq
L= | ]
1 el

Now, after rigorous calculation, we get e = S~teP S as the following:

e~ | jVe*iaigin(g) + qe? + g — iV sin(¢) —iVe?4sin(p) + qe?* — q + iV sin(¢)
2q |i(Ve?sin(¢) —iqe?® +iq — Vsin(¢)) i(Ve?sin(¢p) —iqe* @ — iq — Vsin(¢))

Using Sympy Library[3] this simplifies further to:

from sympy import *

sigma_x = Matrix([[0, 1], [1, 0]1)
sigma_y = Matrix([[0, -I], [I, 011)
sigma_z = Matrix([[1, 0], [0, -111)

identity = Matrix([[1, 01, [0, 111)

# Defining V
a, d = symbols(’a d’, positive=True)
V, x, phi = symbols(’V x phi’)

# V inside barrier range
Vt = (Vkexp(I*sigma_x*phi/2)*sigma_z*exp(-I*sigma_x*phi/2))
.rewrite(sin) .trigsimp()

power = (I*sigma_x*(-k*identity-Vt)*(x2 - x1)).rewrite(sin).trigsimp()

# Defining original T from integral

T = exp(power) .subs(sqrt (V*2 - k**2), Ixq)

.subs(k, sqrt(V+*2 + g**2)).simplify() .subs(sqrt(-q**2), Ixq)

#simplify T to match with Tal

T.applyfunc(lambda x: x.subs(exp(2*Ixa*q), cos(2*axq) + Ixsin(2*a*q))
.subs (exp(-I*a*q), cos(-a*q) + I*sin(-a*q)).expand().trigsimp())

# Alternate T for the transfer matrix for negative energy states

x_vec = Matrix([1, 0, 01)

Vt_vec = V * Matrix([0, sin(phi), cos(phi)])

cp = x_vec.cross(Vt_vec)

Tal = cos(qg¥a)*identity -
(Ixsigma_x*k - sigma_x*cp[0] - sigma_y*cp[1] - sigma_z*cp[2])*sin(qg*a)/q

# Matrices T and Tal come out to be same

gcos(qa)+V sin(¢)sin(ga) —isin(qa)(E—Vcos(¢))
T= [ “
—isin(ga)(E+Vcos(¢)) gcos(ga)—V sin(¢)sin(qga)
q q

_ |cos(ga) 0 sin(qa) 0 iF
r= l 0 cos(qa)] g (LE 0} | =iV cos(e) 0

0 iV cos(qb)] B

V sin(¢) 0
0 —V sin(¢)

13



Using Pauli Matrices, this further simplifies to:

T = cos(qa) — sin(ga) (toxE + Veos(¢)o, — Vsin(g)o.)
o B (3 XV (22)
J— . X
T = cos(qa) — e 7 (@ sin(qa)
q
Giving us the final T operator. This operator given by Equation is such That,
T(Aeikasl |+> + Befik:vl ‘7>) — Ceikmg |+> + Defik:rg |7>
with:
a = =Tg — I
Hence to find the final matrix, each element can be calculated as:
T = (+HT+)
Ty = (-|T|+)
Tor = (+|T|-)
Tyy = (-|T|-)
giving us Transfer matrix as:
(ik Sif;(‘m) + cos (aq)) e~ th(—z1ta2) Ve—i¢e—ik:(m;+"”2) sin (aq)
T: Vel®e—ik(—z1—22) g (aq) ik sin (aq) . (23)
e'e . sin (ag (_z blr; 99) | (og (aq)) e—ik(z1—z2)

3.3 Scattering Matrix
3.3.1 Single Barrier

We can now find out the scattering matrix from our transfer matrix using the following result. Using S
matrix we can calculate t and r which are the transmitted and reflected amplitudes. given :
for S matrix-

C =S11A+ S12D

B = SglA + SQQD

for T matrix-
C = T11A + T12B
D =T5A+T5B

hence giving us final S matrix as:

ToiThe Tz
T T2 Tay
Tl 2
Ta2 T2
Apply Equation to Transfer Matrix to get S as:
_ ge” 1ok Ve i1(2kw2+d) gip (aq)
ik sin (aq)—q cos (aq) —ik sin (aq)+q cos (aq)
S=| " 25
Vei(Zkz1+¢) gip (aq) qef'iak ( )
" iksin (aq)—qcos (aq)  iksin (aq)—qcos (aq)
Where : 2 2 2 2 2 2
—V<sin” (a k* sin” (a cos” (a
(ag) + (ag) + 4 (aq) _ 1 (determinant of T)

q2

14



replace cos(qa) = cosh(Aa) as A = —iq, and similarily for sin(ga) to get:

_ ge P iVe {(2k22+9) ginh (a))
—k sinh (aX)—g cosh (a)) k sinh (aX)+q cosh (a))
S= " _ (26)
B iVel@Fe1+9) ginh (a)) o ge tak
—k sinh (aX)—g cosh (a)) —k sinh (aX)—gq cosh (a))

We can now define the matrix S; which represents the unitary matrix for a single square barrier:

g - te—ika ,,,e—i(2/czg+¢) (27)
L7 pikzi+9) te—ika

where the transmission and reflection coefficients can be found from S, Eq and are parametarized
by:
t= q = e

k sinh (a\) 4+ g cosh (a))

N 28)
1V sinh (a\) ) - (
= — i1 — 72¢im
"~ Jsinh (aX) + qcosh (a)) ! e
where,

_ A
~ (V2cosh?(Aa) — k2)1/2

0= tan-! (ktm;\h)uz) (29)

A=—ig=+V2% - k2

We can see that for a single barrier, the forces from the left and right cancels out due to the partices.
Whereas in a double barrier case, a net force will arise from multiple reflections between two barriers.

3.3.2 Double Barrier

We can write the scattering matrix for both the barriers:
Ccam{l [ 1pm :|
=5
[ (I)out ! CcavL
wout:| |:Ccav :|
|:CcavL 2 q)zn

Where S; and S can be found from Eq. From Eq, we can obtain the generalized scattering
matrix for a double barrier can be given by:

(30)

T Rei#
Re 92 T
\Ijout = Stot \Ijzn

Stot =

(31)

We can now also calculate Cavity Matrix which is scattering matrix inside the cavity between the two
T, R,

barriers:
CCU/UR , |:wl'n:| (32)
CcavL Rl /I’1 (I)ML

We can calculate T now for the double barrier. We know that the phase accumulated over transmission

across barrier 1 and 2 is given by €’®* and e’?? respectively. Phase accumulated while travelling distance
d between the barriers is given by e?*?. So calculating :

2
1—r2ew’
where v = 2kd + ¢ and d¢ = ¢ — ¢1. Similarly, now we can use Eq to write 77 and R; as given in
Fig:

not = (33)

2 i(2ka+v
Ryyy = reik2atd) (1 n 2eil )>

1 — r2et

t
h= 1 —r2ew
rtekd+ez2) (34)
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The coefficients for the waves incoming from the left (R; and 77), and the ones incoming from the
right (R, and T)) are related by R, = Rie~(#1792) and T, = T3.

3.4 Force Calculation

Now we proceed with calculating force between the barriers, using Eq. In order to proceed, we now
divide the system into 3 regions, as shown in Figure and we define the wavefunctions satisfying the
Dirac Equation in each of the regions as follows:
U, = Alfbkeikm + Az@_keiikx
U= qu)keikz + B2¢_k€7ikx (35)
U = C1@pe™ + Cr®_pe™ 7

Now we use Eq( to calculate force at 4 points, i.e. 4 edges of the barriers in the following fashion:

O

)
<‘I/U (g)’ (1) V11 (;l>> KRe :BlB’z"e"(%(’%)*"’l)}
Qo ()] (3)

g (;l > KRe >BlB§ei(2k(%)+¢z)}
d 4 s i(2h(at$)+2)
Urrr|la+ 3 Vi(g2)|¥rrr (@ + 5))= —Re [AlAze 2)+ o2 }
We employ our scattering matrices to find out A;s, B;s, C;s. Next we add the two attractive forces at

—a— 5 and a+ § 4 and subtract the two repulsive forces due to reflections at —5 and %. Summing it over
all possible energy modes depending on k gives us the following result:

> KRe 4y a5 Camdrien)]

=2V / —Re Rel“d“a) — RyTye"*dto2)(1 4 ei”)} (36)

Here we see that the the first term in the integral represents the exterior modes pushing the two
barriers inwards while the second term accounts for the modes confined in the cavity pushing the two
barriers apart. When incoming waves arriving at high energies will be completely transmitted for finite
barriers, hence the integral will converge even in the sharp a — 0 barrier limit, with T' = Va fixed (where
T is essentially the ”barrier strength”).

We can compute the Casimir force for hard-wall boundary conditions by setting the limits of infinite
barrier strength I' — oo and zero width a — 0, hence enforcing a vanishing current at the boundaries.
Here as we are multiplying V into the integral we will keep terms of (9(%) On evulating the integral
further we see that it comes out to be:

*© dk 2kT?
F=2 — | k— . 37
\/0 o2 ( ‘1 + (1 _ 7-2)62(u+2n)|2> ( )

We see that the term in the bracket rapidly oscillating as a function of k exhibiting resonances
arising from the quantized nodes between the boundaries. We can represent these resonances as dirac
delta functions so as to constrain our k integration:

72 . 72

I : =1
750 1+ (1= 72)ei 202 ~ 750 1+ 2(1 — 72) cos v + (1 — 72)2

Here we have taken 1 — 0 for infinite potential barrier strength. We see that the for the 7 — 0 limit,

the expression is valid only if we have cosv = —1. This would require v = 2nm + 7 and hence k can only
take values in the form of k, = 7 (n +1(1- —)) So,
72 T —
PE% 11+ (1— 72)eilv+2n)|2 ~ 94 25(]@ — k) (38)
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Note that d¢ is the difference in spinor polarizations of the two scattering potentials and d¢ = 27n
denotes the situation of identical scattering. An incoming wave satisfying the resonance condition in
Eq will get fully transmitted through the two-barrier system while the modes in between the barriers,
will get fully reflected resulting in the appropriate quantization condition. Finally we can rewrite the

integral in Eq as:
F:2/ k), (1—Z<Sk k:)
0

kdk 1
F:/ ——f/ chSk ky)d (39)
0
kdk 1
P [THE 1S,
0 m d 'f;)
We can compute the Casimir force in Eq by applying the generalized Abel-Plana formula,

e o ° sinh 27t
tdt — = — tdt 1
/0 Z(n +5) /0 (cos 27 — cosh 2t * ) (40)

n=0

Using Eq([0) we obtain the the casimir force between the two barriers in the I' — oo limit as:

2
s op
F__24d2 [1—3(7T>] (41)
in —m < d¢ < 7 following which it is periodic with period 27. Similarly we can also obtain the force
between two scatterers of finite height and width. In the small barrier strength limit (I' < 1) the force

will come out to be as: 2 56
cos a
_ e 42
F 2md? {1+O<d)} (42)

4 Results

On observing Eq and Eq we can see that the periodic nature of both forces is similar and can
see that the system will exhibit the respective attractive or repulsive Casimir forces in both hard wall
and small barrier strength limits.

A plot of the forces (scaled appropriately as shown in the graph) in Eq and Eq in the limits
of ' = oo and T' <« 1 respectively for a — 0 against d¢ (relative spinor polarization) is shown in
Fig below. The solid and dashed lines represent the forces in hard and small barrier strength limits
respectively. In order to compare the forces we have rescaled the magnitude of the force in I' < 1 limit
tol =1/2.

In the limit d < a ,the scaling of force with distance follows a universal 1/d?> dependence, and
there’s a consistent ratio of 1/2 between the strengths of repulsive and attractive forces for massless
one-dimensional fluctuating fields. As the range of potentials approaches the separation between them,
the first-order correction arising from the shape of the scatterer scales proportionally to dF/F ~ a/d as
described in Eq. This behavior is akin to a multipole expansion in electrostatic interactions.

We can express the relative orientation as d¢ = cos_l(“}/ll‘lvé‘). When the two are aligned as
11°[v2
d¢p = 2mn we get F = —7/ 24d2Eq@ yielding an attractive Casimir force as was obtained in this

paper[7]. When the relative polarization of the defect potentials is antiparallel as d¢ = (2n + 1), it
yield a repulsive force of F' = 7/12d?. In our calculation, the magnitude and sign of the force varies as a
function of the relative polarization of two scatters at a fixed distance. As shown in Fig this behavior
occurs for both finite barriers and hard-wall boundaries.

The distinctive cusps observed in Fig at odd multiples of n arise from a summation over discrete
energy levels E, (0¢). These energy bands, as depicted in the k,, values in Eq, intersect the zero-
energy point at 0¢p = (2n+ 1) as illustrated in Fig. At a constant chemical potential, with negative-
energy states of the Dirac sea filled, there’s a transition of one state within each 27 periodic region,
marked by dotted vertical lines in Fig. Consequently, the force undergoes a sudden change in slope
as seen in Fig at the points where there’s a jump in the number of occupied energy levels. However,
when the barrier strength is finite, these cusps in the force disappear. The resonance condition, leading
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FIGURE 4: F/570 vs d¢ [source:[1)]]

to quantized states between the barriers, holds true only for hard-wall boundaries. It’s worth noting that
energy states between finite barriers exhibit a continuous spectrum.
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FIGURE 5: E,, vs d¢ [

5 Discussion

We can see that Eq can be implemented in 1-D systems such as carbon nanotubes. This force
along with appropriate dimensional factors yield an interaction energy of F. = —”271”611‘" which gives us an
energy of 1.4meV at d = 50nm. This follows the same spatial scaling as the Coulomb interaction but its
value is only 5% to that of Coulomb interaction. This elaborates that for charge-neutral dipoles, whose
electrostatic interactions scale as B4 ~ p?/d?®, the Casimir interaction dominates in the far field, where d
is much larger than 5s, indicating a strong influence of Casimir forces over electrostatic forces in specific
configurations of carbon nanotubes and potentially similar one-dimensional systems.

The study marks a significant advancement in our understanding of quantum fluctuation-induced
forces in low-dimensional systems. The ability to modulate the Casimir force through scatterer properties
opens new avenues in the design and manipulation of nano-scale devices.
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Conclusion

Hence, a new force operator approach was introduced to calculate the Casimir effect, revealing the
fluctuation-induced force between two finite square barriers mediated by massless Dirac fermions in one
dimension. This approach demonstrated that the Casimir force, which scales inversely with the square of
the distance, can be adjusted from attractive to repulsive depending on the relative spinor polarizations
of the scattering potentials.
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