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Abstract

This project report covers the work done in an in-depth study of Heusler alloys.
Softwares like WIEN2k[1] and Quantum Espresso (QE)[2–4] were used to repro-
duce the findings from a seminal paper on Ti2VGe [5]. Building upon this progress,
further work was carried out on Fe2ScSi/Ge/Sn. The analysis was done on multiple
density approximations like Perdew-Burke-Ernzerh Generalized Gradient Approxi-
mation (PBE-GGA) for structural optimization, and further modified Becke-Jones
(mBJ) and Hybrid functional (HF) exchange-correlation potentials were used to
examine properties of the alloy under study. Electronic, magnetic and structural
properties were investigated for these heusler alloys. The results revealed interest-
ing electronic properties, contributing to a better understanding of these materials,
thereby opening up potential applications of Fe2Sc-based Heusler alloys in spin-
tronic applications.

5



1 Introduction

Heusler alloys have been of great scientific interest in modern times due to their out-
standing applications in various fields, such as spintronics[6–8], thin-film growth, giant
magnetoresistance (GMR), thermoelectric applications and other energy conversion sys-
tems, as well as their novel characteristics. Current times have brought the depletion
of fossil fuels and various environmental concerns, which pushed scientists to investigate
new renewable energy sources.

1.1 Problem Statement/Motivation

Searching for Heusler alloys and stable materials exhibiting half-metallic properties is
still daunting for researchers in material sciences. This study aims to overcome the
experimental hurdles and narrow the choices among the wide range of material choices,
easing the tasks for experimentalists to choose the material. Computational techniques
predict half-metallic behaviour for Heusler alloys and a high Curie temperature, which
ultimately leads to the ease of synthesis, thereby making them highly desirable material
choices in the field of spintronics.

2 Theoretical Framework

This section shall cover the theoretical knowledge required to comprehend the results
obtained in the study. We begin by explaining the source and mathematics used in the
Density Functional Theory (DFT) used in QE and WIEN2k code. In the following sub-
section, we shall provide some theoretical background for understanding Heusler alloys.

2.1 Density Functional Theory

DFT is an approach to studying the Schrödinger equation by writing energy in terms of
the particle densities instead of the usual wave function. DFT simplifies the computations
considerably when solving the many-body problems that are being solved in material
simulation.

We are interested in finding the ground state, i.e. the most stable configuration of
our many-body system, using the many-body Schrödinger equation. Let us consider an
N-atomic system. Its Schrödinger equation is given by :

Ĥψ({ri} , {Ri}) = Eψ({ri} , {Ri}) (1)

ri refers to the part of wavefunction due to the electrons, while Ri corresponds to the
nuclei. The corresponding Hamiltonian for the many-body system is given by:

Ĥ = T̂ + V̂ee (2)

where,

V̂ =
qiqj

|r⃗i − r⃗j|

Corresponds to the electron-electron Coulomb interaction, and T̂ corresponds to the
kinetic energy term of the wavefunction. We proceed further by simplifying Eq(1) by
applying the Born-Oppenheimer approximation, which states that the mass of nuclei is
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huge as compared to the mass of electrons and hence, their mechanics can be separated
and dealt with individually or in other words assuming that the nuclei and electrons are
independent species with nuclei having slow dynamics while electrons having way faster
dynamics. We decouple our wavefunction as follows:

ψ({ri} , {Ri}) → ψN({Ri}) ∗ ψe({ri}) (3)

This simplifies the calculations since the time needed for electrons to reach their ground
state is much faster than when the nuclei dynamics were included. Now, we can focus
on the problem with the perspective that the electrons experience some external fixed
potential due to the nuclei. This modifies eq(2), and now we only focus on the electronic
part of the Hamiltonian :

Ĥ = − ℏ2

2me

Ne∑
i

∇2
i +

Ne∑
i

Vext(ri) +
Ne∑
i=1

∑
j>i

U(ri, rj) (4)

We proceed by defining the electron density in the following way:

n(r) = ψ∗(r1, r2, ..., rN)ψ(r1, r2, ..., rN) (5)

This modifies our problem, and now, instead of focusing on the individual electron as a
wave, we view them as electron density as a whole. It reduces the dimensions significantly
from 3N previously to only three now.

Our following assumption assumes that any arbitrary jth electron is treated as a point
charge inside the field of all other electrons. Hence, our many-electron problem essentially
reduces to many one-electron problems which we can solve. By doing this, we can write
the Hartree product and redefine our electron density:

ψ(r1, r2, ..., rn) = ψ(r1) ∗ ψ(r2) ∗ ... ∗ ψ(r3)

n(r) = 2
∑
i

ψ∗
i (r)ψi(r)

(6)

To proceed further, we have utilized the following two theorems proposed by Hohenberg
and Kohn, which bring in the functional part of the Density functional theory and help
us express ground state energy in terms of energy.

2.1.1 Hohenberg and Kohn Theorem 1

It states that the ground state energy E can be given as a unique functional of the electron
density. A functional is defined as the function of a function; for instance, differentiation
F[f] = df

dx
is a functional.

E = E[n(r)]

2.1.2 Hohenberg and Kohn Theorem 2

The second theorem states that the electron density which yields the minimum overall
energy of the functional is the true electron density for the system’s ground state. To
express it mathematically, we can say that any other electron yields a higher energy than
the true ground state energy.

E[n(r)] > Eo[no(r)]
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where Eo and no represent the ground state’s true energy functional and electron density,
respectively.

Moving on, this energy functional can be broken into two parts, the unknown part
known as the exchange-correlation functional and the known part.

E[{ψi}] = Eknown[{ψi}] + EXC [{ψi}]
where,

Eknown[{ψi}] = − ℏ
me

∑
i

ψ∗
i∇2ψid

3r+

∫
V (r)n(r)d3r+

e2

2

∫∫
n(r)− n

(
r
′)

r − r′
d3rd3r

′
+Eion

(7)
The following terms are the electron’s kinetic energy, the interaction between nuclei

and an electron, the interaction term between two electrons, and the interaction term
between two nuclei.

The remaining exchange-correlation functional EXC [{ψi}] incorporates all the neces-
sary quantum mechanical terms which account for the electron-electron interactions for
the system and need to be estimated as it is unknown. Various correlation functionals,
as shown in Fig(1), already constructed, work well with the experimental results. Still,
the quest is yet to find an accurate correlation functional, which is also computationally
effective.

Figure 1: Jacob’s Ladder[9]

As we climb up the Jacob’s ladder (Fig[1]), we achieve higher accuracy at the cost
of computation. The functionals, including meta-generalized gradient approximation
(GGA) and above, include the orbital interactions in the systems, which typically offer
better accuracy. The most commonly used correlation functional for solids is GGA,
which offers better accuracy over the primitive Local Density Approximation (LDA).
HyperGGA is available as a hybrid functional in various software and is considered the
most advanced and accurate, but it is pretty computationally intensive.

2.1.3 Kohn-Sham scheme

Now that we have set the energy as functionals of the electron density, we write and solve
the Hamiltonian for a set of single electron wave functions, which only depend on three
spatial variables, ψ(r).[

− ℏ
2m

∇2 + V (r) + VH(r) + VXC(r)

]
ψi(r) = ϵi(r)ψi(r) (8)
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The following terms in Eq(8)correspond to the kinetic energy of the electron, potential
due to the nucleus, potential due to the electron density, i.e. due to other electrons
and the exchange potential, respectively. We employ the self-consistent scheme to solve
these multiple Kohn-Sham equations self-consistently, starting with an initial guess for
the electron density. Hence, this is also called the self-consistent frequency (SCF) cycle.

Trial guess n(r)
Solve Kohn Sham equa-

tions with n(r) and obtain
the wavefunctions ψi(r)

Calculate the electron
density from the obtained
wavefunctions using Eq(5)

Compare n(r)

n(r) matches with provided tol

yes

doesn’t match with initial n(r)

Figure 2: Flow chart for the SCF calculation

Once we obtain the electronic ground state, we can proceed with calculating the ionic
forces on atoms, which is straightforward as below:

Fi = −dE
dri

= −

〈
ψi

∣∣∣∣∣∂Ĥ∂ri
∣∣∣∣∣ψi

〉
(9)

We can move along the ionic forces to obtain the corresponding ionic ground state, which
is done during the relaxation calculation. Once this is achieved, we can calculate many
other properties by displacing the ions from the ground state and determining forces on
other ions. It helps us calculate the system’s force constants and vibrational frequencies,
such as the phonon dispersion frequencies.

2.1.4 Plane Wave DFT

To apply DFT to crystalline solids, we consider the free electrons as plane waves, and
the crystals are nothing but a repetition of ions or periodic potential, say some U(r).
Hence, the electrons in a periodic potential are known as Bloch waves, which gives us the
perturbed free electrons in the lattice given by:

ψnk(r) = exp(ikr)Unk(r) (10)

Reciprocal Lattice

We use the concept of reciprocal lattice, which is nothing but a Fourier transformation
of the Bloch waves. A reciprocal lattice is a mathematical construct to describe wave
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vectors and analyze crystals. Since all periodic functions can be expanded as a Fourier
Series, we expand Eq(10)

ψnk = exp(ikr)
∑
G

ckexp(iGr) (11)

Hence, the Bloch waves can be represented as a sum of plane waves, with a wave vector
defined as G+k with kinetic energies, E = ℏ

2m
|k + G|2. Since the series summation

is infinite, we have to define a cutoff energy for this summation, chosen after testing
for convergence in the calculations, which is an essential parameter while performing
calculations.

Brillouin Zone

Another critical concept in DFT is the Brillouin zone (BZ). A primitive unit cell in the
reciprocal space is called a Brillouin zone. Any lattice vectors which differ by a reciprocal
lattice vector G are equivalent due to the repetitiveness of the lattice, i.e., k

′
= k + G.

All integrals calculated in the DFT are done for the 1st BZ.

Figure 3: Brillouin Zones for (a) simple cubic (SC), (b) face centered cubic (fcc),
(c) body centered cubic (bcc), (d) hexagonal (hex)[10]

To solve the systems in these BZ, we must choose an appropriate number of K-points to
sample the BZ. These K-points are sampled with respect to energy convergence.
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2.2 Heusler Alloys

Heusler alloys are a fascinating class of intermetallic compounds known for their di-
verse magnetic and electronic properties. They make them suitable for spintronics, ther-
moelectrics, and magnetic refrigeration applications. Named after the German chemist
Friedrich Heusler, who first discovered them, these alloys typically have compositions
represented as X2YZ or XYZ, where X and Y are transition metals, and Z is a main
group element.
Heusler alloys can be broadly classified into three main types:

2.2.1 Regular Heusler Alloys

These alloys have the stoichiometry X2YZ and crystallize in the cubic L2 1 structure,
characterized by the space group Fm3m. In this structure, the X atoms occupy two
distinct Wyckoff positions, forming a face-centered cubic lattice with Y and Z atoms
occupying alternate faces. This arrangement leads to a highly ordered structure. Full
Heusler alloys are known for their high degree of spin polarization and are of particular
interest in spintronic devices.

2.2.2 Half-Heusler Alloys

With the formula XYZ, these alloys adopt the C1 b structure, essentially a three-quarters
filled version of the L2 1 structure with one of the X sites vacant. This results in a non-
centrosymmetric space group F43m. Half-Heusler alloys have been studied extensively
for their thermoelectric properties and topological insulator behaviour.

2.2.3 Inverse Heusler Alloys

Inverse Heusler alloys also have the composition X2YZ but differ in their atomic arrange-
ment. They crystallize in the inverse Heusler structure with space group F43m, similar
to the half-Heusler structure but fully occupied. In this structure, the distribution of X
and Y atoms differs from that of regular Heusler alloys, leading to different electronic
and magnetic properties.

2.2.4 Properties and Applications

Heusler alloys exhibit various magnetic properties, from ferromagnetic to antiferromag-
netic, depending on the nature of the transition metals used and their electronic configu-
rations. The flexibility in their composition allows for the tuning of electronic properties,
making them highly adaptable for various applications. For instance:

• Spintronics: Due to their high spin polarization, Heusler alloys are ideal candidates
for spintronic applications, where electronic devices operate based on the spin of
electrons rather than their charge.

• Thermoelectrics: Half-Heusler alloys are particularly noted for their high thermo-
electric efficiency, which makes them suitable for converting waste heat into elec-
tricity.

• Magnetic Refrigeration: Some Heusler alloys undergo magnetocaloric effects, which
are helpful in magnetic refrigeration technology, an energy-efficient cooling technol-
ogy.
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2.2.5 Challenges and Innovations

Despite their potential, challenges such as achieving high spin polarization in practical
devices and optimizing thermoelectric properties at room temperature remain. Ongoing
research aims to address these issues through alloying, treatment processes, and nanos-
tructuring, which have shown promise in enhancing the desirable properties of Heusler
alloys.
In summary, Heusler alloys represent a versatile and promising field in materials sci-
ence, offering many opportunities for fundamental research and technological applica-
tions. Their structural diversity and tunable properties make them a focus of intense
research aimed at new and improved materials for future technologies.

3 Softwares

3.1 WIEN2k

The Full Potential Linearized Augmented Plane Wave + local orbitals (FP-LAPW+lo)
method has proven to be one of the most accurate methods for computing the electronic
structure of solids within density functional theory. The first copyrighted version was
WIEN, published by P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey in Comput.
Phys. Commun. 59, 399 (1990).
WIEN2k is written in FORTRAN 90 and requires a UNIX/Linux-type operating system
since the programs are linked via C-shell scripts. Hardware requirements will change
from case to case, but small cases with 60 atoms per unit cell can be run on any Intel
(AMD) based PC/Laptop. One of its distinguishing features is the ability to handle
complex structures, including those with lower symmetry or large unit cells, making it
particularly powerful for studying a wide variety of materials. The software supports
various exchange-correlation functionals, including local density approximation (LDA),
generalized gradient approximation (GGA), and more advanced functionals like meta-
GGA and hybrid functionals. This versatility enables users to tailor their calculations to
specific requirements and achieve reliable results.

3.1.1 FP-LAPW

The LAPW method has proven to be one of the most accurate methods for computing
the electronic structure of solids within density functional theory. The LAPW method
is a procedure for solving the Kohn-Sham equations for the ground state density, total
energy, and (Kohn-Sham) eigenvalues (energy bands) of a many-electron system (here, a
crystal) by familiarising a basis set which is specially adapted to the problem.
The unit cell is divided into two parts: the atomic sphere, which is non-overlapping, and
the interstitial region between them. In both regions, different basis sets are used to solve
the Kohn-Sham equation. For in-depth details of the LAPW method, we can refer to a
book by Singh and Nordstr ”om [11].

• Inside the sphere:

ϕkn =
∑
lm

[Alm,knul(r, El) +Blm,knu̇l(rl, El)]Ylm(r̂) (12)

where ul(r, El) is the regular solution of the radial Schrödinger equation for energy
El and the spherical part inside the sphere. u̇l(r, El) is the energy derivative of ul.
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Alm and Blm depend on kn. A linear combination of these two gives the Lineariza-
tion of the radial function. ul and u̇l can be obtained by numerical integration of
Schrödinger equarion on a radial k-mesh inside the sphere.

• Inside the interstitial region:

ϕkn =
1√
ω
exp iknr (13)

kn = k +Kn are the reciprocal lattice vectors, and k is the wave vector inside the
first BZ. Each plane wave is augmented in an atomic-like function in every atomic
sphere.

The solutions to Kohn-Sham equations derived in Eq(10) are expanded in this combined
basis set of LAPW’s.

ψkn =
∑
n

cnϕkn (14)

The convergence of this basis set is controlled by a cutoff parameter RMT × Kmax =
6− 9, where RMT is the smallest atomic sphere radius in the unit cell and Kmax is the
magnitude of the largest K vector in the Eq(14).

3.1.2 APW+lo

Improvements were made in the FP-LAPW approach by improving the Linearization and
enabling a consistent treatment of semi-core and valence states in one energy window.
Additional basis functions were added independent of kn and called local orbitals (LO)
to achieve this.

ϕlo
lm = [Almul(r, E1,l) +Blmu̇l(r, E1,l)Ylm(r̂)] (15)

Eq(15) appears similar to eq(14), but here, Alm and Blm do not depend on kn and are
determined by the condition that the LO is zero at the sphere boundary and normalized.
Note that the total wave function is still smooth and differentiable. As shown in the
reference [12], this new scheme converges practically to identical results as the LAPW
method. Still, it allows the reduction of RKmax by about one, leading to significantly
smaller basis sets (up to 50%). Thus, the corresponding computational time is drastically
reduced (up to an order of magnitude).
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Figure 4: Program flow in WIEN2k[13]
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3.2 Quantum Espresso

Quantum ESPRESSO (QE) is an advanced computational chemistry software suite
designed primarily for simulations of electronic structure properties of materials using
DFT, plane waves, and pseudopotentials. This software is widely recognized in materials
science for its robust capabilities in providing accurate, high-precision calculations of the
electronic properties and total energy of bulk and reduced-dimensional systems.

QE stands out for its modular design, allowing researchers to perform various calcula-
tions, including structural optimization, molecular dynamics simulations, and electronic
and magnetic properties studies. The suite supports multiple types of DFT functionals.
It incorporates corrections such as van der Waals interactions and Hubbard U, enhancing
its versatility and applicability to various material types. It is particularly noted for
its ability to handle periodic three-dimensional, two-dimensional, one-dimensional, and
zero-dimensional systems.

The efficiency of QE is driven by its use of plane waves as the basis for electronic calcula-
tions, combined with pseudopotentials to simplify the treatment of electron-ion interac-
tions. This combination enables the simulation of complex materials systems with consid-
erable accuracy while being computationally efficient. The software is also designed for
high-performance computing environments and can run on large parallel clusters, which
is crucial for tackling computationally demanding tasks.

3.2.1 Pseudopotentials

Pseudopotentials simplify the treatment of electron-ion interactions by explicitly remov-
ing the need to consider core electrons in the calculations. They represent an effective
potential seen by the valence electrons, capturing the effect of the atomic core on them
without involving actual core electron states. The choice of pseudopotentials is pivotal
because it affects calculations’ accuracy, efficiency, and convergence.

3.3 VESTA

VESTA is a versatile and powerful software package for visualizing and analyzing crystal
structures and electron/nuclear densities in three dimensions. It is widely used by re-
searchers in crystallography, materials science, and chemistry for its robust visualization
capabilities and user-friendly interface.

• Visualization: VESTA excels in creating detailed, high-quality visual representa-
tions of crystal structures, molecular structures, and 3D data such as charge densi-
ties and potential maps. It supports multiple visualization modes, including ball-
and-stick, space-filling models, and polyhedral.

• Data Analysis: Beyond visualization, VESTA provides tools for analyzing struc-
tural parameters such as bond lengths, angles, and other geometrical data. It also
allows for the simulation of X-ray and neutron powder diffraction patterns, which
is essential for comparing theoretical models with experimental data.

• File compatibility: VESTA supports various file formats used in computational
chemistry and materials science, making it highly versatile and compatible with
other software tools.
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4 Methodology

4.1 Implementation

This section will cover the input files or the initialization for WIEN2k and QE.

4.1.1 WIEN2k

Structure File

The first and foremost task in WIEN2k is to create a .struct file for your system. This can
be done via the interactive graphical user interface (GUI) w2web, or a Crystallographic
information file (CIF) can be imported from software like VESTA. While working in
WIEN2k, we must ensure that the struct file matches the name of the folder we are
working in.

Initialization

Next, we proceed with the initialization for the SCF calculation by running the init lapw
script. This initialization has many flags that we can set according to our calculation.
Some of the flags I used frequently are listed below:

• -h: Help flag for the script

• -b: batch mode, i.e., default parameters

• -sp: Initializing for spin-polarized calculation

• -red: Reduction in % for the muffin tin radius (RMT)

• -ecut: Energy separation value between the core and valence electrons

• -rkmax: Value for RKmax

• -lmax: Value for Lmax

• -gmax: Value for Gmax

• -numk: Specifies the number of k-points in the 1st BZ

Values of RKmax, K-points, and ecut affect our calculation heavily and must be chosen
after converging with respect to energy, as shown in section 4.2.
Moving on, we are now ready to perform the SCF calculation for our system using the
runsp lapw (for spin-polarized calculation) or run lapw (for non-spin-polarized calcula-
tion) script included in the WIEN2k package. This script must be run in the working
directory. Flags for these scripts can be referred to in the WIEN2k userguide[13].
Further, we used WIEN2k to perform volume optimization and implement PBE, mBJ,
and YS-PBE0(similar to hybrid functional HSE06 [14]), potential for calculation of band-
structure and density of states (DOS).
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Volume Optimization

The program ”optimize” (x optimize) generates a series of struct files based on our input
with various volumes. It also produces a shell-script optimize.job, similar to Fig ??.

Figure 5: optimize.job[13]

We can modify this script to our needs, for instance, exchanging the run lapw with
runsp lapw. Next, we can use the eplot lapw script to plot the volume V/S energy curve
or lattice parameter V/S energy curve. Alternatively, we can also use Python, Gnuplot or
Origin to plot these curves after running the grepline script, which will give us a summary
of total energy V/S Volume.

Density of States

DOS is plotted by first preparing a denser k-mesh for DOS calculation using x kgen. Next,
we run ”x lapw1 -up” and ”x lapw1 -dn”, which generates eigenvalues and eigenvectors
according to the denser k-mesh. Then, we run ”x lapw2 -qtl -up” and ”x lapw2 -qtl -dn”,
which generate valence charge density expansions([13]) for up and down spin, respectively.
Finally, appropriate DOS is generated using ”x tetra -up” and ”x tetra -dn”, which creates
.dosevup and .dosevdn files for the DOS data.

Bandstructure

To plot the band structure, we first need the K-map for the system we are plotting to plot
the band structure. This can be done by getting it from the Bilbao Cryst Server or using
XCrysden according to our lattice type. Again, we run the ”x lapw1” and ”x lapw2”
commands similarly to DOS for the k-map. Finally, ”x spaghetti -up” and ”x spaghetti
-dn” are run to calculate the band structures, which generate the .agr file containing the
information about the bands. This can be plotted in any plotting software or via the
w2web GUI.

mBJ potential

Implementing mBJ potential begins once normal initialization is completed. We run the
”init mbj lapw” script, which creates case.inm.tau file and sets ”R2V” in case.in0 file.
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Next, we run a single iteration of SCF using ”runsp lapw -i 1” and run ”init mbj lapw”
again. The second run allows us to select parameters of the original mBJ potential. Once
this is completed, whenever we use the command ”run(sp) lapw”, it will run with the
mBJ potential. A common error while running mBJ occurred when the RMT reduction
was set to zero; RMT reduction must be at least 5% for mBJ potential.

HSE potential

Initialization for hybrid potential is similar to that of mBJ(4.1.1). First, we let one
entire cycle of SCF get completed to get information about the filled and empty bands.
We save this cycle by ”save lapw -d pbe”, which saves the PBE run in a pbe directory.
Next, we run ”init hf lapw”, which creates a case.inhf file. We edit the number of bands
(nband) in this file to be at least one greater than the last occupied band as obtained
from the SCF calculation. We then provide a reduced k-list since the hybrid calculation
is computationally expensive; we must do it on a reduced k-mesh. Next, we run the SCF
with HSE potential by adding the ”-redklist” flag in the ”run(sp) lapw” command.

4.1.2 Quantum Espresso

Input file

Figure 6: Input file for SCF in QE

Some of the important flags used in the QE input file (Fig 6) for SCF are given below:

18



• calculation: Specifies the calculation to be performed.

• prefix: This defines your calculation. All calculations in QE must be done under
the same prefix.

• pseudo dir: This flag defines the path where the pseudopotential has been down-
loaded on your system.

• outdir: Defines the path where the output files must be stored.

• verbosity: Decides how much information will be printed in the output file.

• ibrav: Stands for the lattice type. 2 stands for FCC lattice.

• celldm: Defines the lattice parameter.

• nat: Number of atoms in the unit cell.

• ntyp: number of types of atom.

• ecutwfc: Kinetic energy cutoff (Ry) for the wavefunctions.

• ecutrho: Kinetic energy cutoff (Ry) for charge density and potential.

• nspin: Specifies the spin-polarized calculation.

• starting magnetization: Initial guess for the code to begin the SCF cycle.

• occupations: Specifies how the electronic states are occupied in calculations, par-
ticularly relevant in systems with partial occupancy of electronic states, such as
metals.

• ATOMIC POSITIONS: specifies the positions in the unit cell.

• K POINTS: Specifies the number of K-points used in the k-mesh.

SCF calculation is run via the terminal using the command ”pw.x ¡scf.in¿ scf.out” via
the pw.x package and ”mpirun -np 8 pw.x ¡scf.in¿ scf.out” in case the QE is installed for
parallel execution. Mpirun runs the calculation across multiple CPU cores specified by
the -np flag.

Phonon

To calculate the phonon frequency plot and the phonon dispersion curves, we must first
perform a SCF calculation 4.1.2. Then, we prepare an input file for the package ”ph.x”,
which calculates a dynamical matrix on uniform q points. This calculation is computa-
tionally expensive and must first be done on fewer q-points. Next, we perform an inverse
Fourier transform of the dynamical matrix to obtain inverse Fourier components in real
space using ”q2r.x”. Finally, we perform the Fourier transformation of the real space
components to get the dynamical matrix at any q using matdyn.x.
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Elastic properties

Elastic constants were calculated in QE using the ”thermos pw.x” package. Implemen-
tation is relatively straightforward for calculating elastic properties; we first create the
input file for SCF. We also write a thermos control file, which is necessary for the ther-
mos pw package. Using the elastic constants tensor, the code can calculate and print a
few auxiliary quantities: the bulk modulus, the poly-crystalline averages of the Young
modulus, the shear modulus, and the Poisson ratio. The Voigt and the Reuss averages
are printed together with the Hill average. The Voigt-Reuss-Hill average of the shear and
bulk modulus are used to compute average sound velocities. The average of the Poisson
ratio and the bulk modulus allows the estimation of the Debye temperature. The Debye
temperature is also calculated using the exact formula evaluating the average sound ve-
locity from the angular average of the sound velocities calculated for each propagation
direction, solving the Christoffel wave equation. The exact Debye temperature is used
within the Debye model to calculate Debye’s vibrational energy, free energy, entropy,
and constant strain heat capacity. These quantities are plotted in a postscript file as a
function of temperature.

4.2 Optimizations

4.2.1 WIEN2k

Optimization of parameters was carried out for Fe2ScSn, and its results were used to
perform further calculations for all systems due to the similar nature of all three Heusler
alloys.

E cut

The -ecut parameter was defined as the energy separation value between the core and
valence electrons in section 4.1.1. Multiple SCF runs were performed while keeping
all other parameters constant and varying the -ecut in the specified range according to
WIEN2k[13].

Figure 7: Optimization plot for ecut parameter in WIEN2k

We observe a sharp minimization in total energy after -6Ry; hence the -ecut parameter
was set to -6Ry.
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RKmax

A similar optimization was performed for -rkmax, which is defined as the maximum value
of the product of the smallest atomic sphere and largest wave vector.

Figure 8: Optimization plot for RKmax parameter in WIEN2k

The -rkmax parameter successfully displayed converging behaviour up to 4 places of
decimal. Increasing -rkmax greatly influences the computation cost and hence, a value
of 8 was chosen after analyzing the results.

RMT reduction

Finally, a convergence test was performed for the -red parameter, which defines the
percentage reduction in the RMT radius of atoms.

Figure 9: Optimization plot for RMT reduction parameter in WIEN2k

The RMT reduction parameter displayed a gradual minimization in energy in the fourth
decimal place; hence, it does not affect the calculation significantly in our case. A value
of 5% reduction was chosen to adjust for volume optimizations and apply different po-
tentials.

4.2.2 Quantum ESPRESSO

Similar optimization was carried out for Fe2ScSi for parameters in QE to test for conver-
gence.
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E cut

The kinetic energy threshold value for wavefunctions was varied, and multiple runs were
performed to test for the convergence.

Figure 10: Optimization plot for ecut parameter in QE

A good convergence was achieved in the ecutwfc parameter. Like WIEN2k, the ecut
parameter significantly affects the computational cost, so a value of 80 Ry was chosen.

K points

The number of k-points determines the points in the 1st BZ over which integrations will
be carried out. A denser k-mesh leads to accurate results but more computation cost. A
convergence test was performed for the number of k-points.

Figure 11: Optimization plot for K points in QE

K-points converged up to 4 places of decimals, and a value of 8× 8× 8 was chosen for a
dense enough k-mesh.
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4.3 Computational Detail

4.3.1 WIEN2k

The plane-wave cutoff parameter was taken as RMT ×Kmax = 8 to determine the matrix
size, whereRMT is the smallest muffin-tin (MT) sphere radius, andKmax is the maximum
modulus of reciprocal lattice vectors K = k + G in the first BZ. The maximum partial
wave value inside the muffin tin sphere was set as lmax = 10. We expanded the potential
and the charge density as a Fourier series with wave vectors up to Gmax = 12a.u−1. The
cutoff energy separating the valence and core states was chosen to be −6Ry. Integrations
in the irreducible first BZ were performed using 49 special k points based on a mesh of
size 10 × 10 × 10. The (SCF) iteration process was terminated when the change in the
absolute value of the total energy was less than 10−4Ry. For hybrid potential calculation,
a reduced Q-mesh was considered for 1× 1× 1 along with k-mesh of 6× 6× 6 due to the
computationally expensive calculation.

4.3.2 Quantum ESPRESSO

The wave functions were expanded in a plane-wave basis set with a kinetic energy cutoff
of ecutwfc = 90 Ry. Brillouin-zone integrations were performed using a 8× 8× 8 k-point
mesh. Integration up to the Fermi surface was performed using the Gaussian smearing
technique with a smearing parameter degauss = 0.05 Ry. The SCF iteration process was
terminated when the change in total energy was less than conv thr = 1.0e − 8. Further
phonon calculations were performed on q-mesh of 2× 2× 2.

5 Results

5.1 Structure

The study of two different site coordination structural inverse types and regular types for
Fe2ScZ (Z=Si; Ge; Sn). For inverse structure, the F.C.C structure of the bulk Fe2ScZ is in
the F43m space group with the coordinates of (0,0,0), (0.25,0.25,0.25) for Fe, (0.5,0.5,0.5)
for Sc, and (0.75,0.75,0.75) for Si/Ge/Sn atoms as portrayed in Fig 12,13,14.

(a)
(b)

Figure 12: (a) Inverse structure of Fe2ScSi (b) Regular structure of Fe2ScSi
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(a) (b)

Figure 13: (a) Inverse structure of Fe2ScGe (b) Regular structure of Fe2ScGe

(a) (b)

Figure 14: (a) Inverse structure of Fe2ScSn (b) Regular structure of Fe2ScSn

On the contrary, for regular Heusler, the structure is in the Fm3m space group with the
coordinates of (0.25,0.25,0.25), (0.75,0.75,0.75) for Fe, (0,0,0) for Sc, and (0.5,0.5,0.5) for
Si/Ge/Sn as portrayed in Fig 12,13,14.
The first step is to obtain the ground state point with its equilibrium volume to find
accurate results. The total change in energy of Fe2ScZ versus its unit cell volume (E-V)
and fit with the Birch-Murnaghan equation of state[15]:

E(V ) = E0 +
9B0V0
16

B′

[(
Vo
V

) 2
3

− 1

]3

+

[(
V0
V

) 2
3

− 1

]2 [
6− 4

(
V0
V

) 2
3

] (16)

B0 and B
′
are the bulk moduli and the first pressure-derivative, respectively. The volume-

dependent pressure P, bulk modulus B are given by: P = −dE
dV

; B = −V dP
dV

= V d2E
dV 2 ;

B
′
= dB

dP
. The diagram is shown in Fig (15,16) in the ferromagnetic (FM) and non-

magnetic (NM) phases for both regular and inverse structures.
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Figure 15: Volume optimization plot for Fe2ScSi

Figure 16: Volume optimization plot for Fe2ScGe
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Figure 17: Volume optimization plot for Fe2ScSn

Alloy Type M. State a (Å) V (Å3) E0(Ry) µb(BM) B (GPa) B’

Fe2ScSi Regular NM 11.0645 338.6401 -7199.85811 177.9717 4.4428
FM 11.0733 339.4433 -7199.86065 0.93716 176.0971 3.5337

Inverse NM 11.2526 356.2061 -7199.737924 158.274 4.619
FM 11.4620 376.4620 -7199.816264 4.66148 124.6479 4.1473

Fe2ScGe Regular NM 11.2510 356.0507 -10817.93193 166.6309 4.4477
FM 11.2571 356.6318 -10817.93524 2.60759 165.9459 4.4513

Inverse NM 11.4196 372.3016 -10817.83301 152.6496 4.9268
FM 11.6397 394.2454 -10817.92132 4.76 116.9207 4.0045

Fe2ScSn Regular NM 11.7291 403.4027 -18977.97861 151.0243 5.3994
FM 11.9072 422.0532 -18977.9731 3.13889 99.8736 10.1465

Inverse NM 11.8855 419.7562 -18977.86208 129.026 2.976
FM 12.1084 443.8167 -18977.96221 4.7255 108.9809 11.7789

Table 1: Calculated properties for Fe2ScSi, Fe2ScGe, and Fe2ScSn alloys

As we can observe from Table 1, the regular Heusler structures are more stable than the
inverse structure. Hence, all the calculations in the further sections are done using the
regular structure.

5.2 Magnetic Properties

Fe2ScSi and Fe2ScGe have a moderate magnetic moment of about 0.916 BM and 0.85 BM
per formula unit, which is far less than the predicted one of 1 µb using the Slater–Pauling
rule. This indicates that Fe2ScSi is not a perfectly half-metallic compound because the
total spin moment is not an integer number according to PBE-GGA potential. However,
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as observed further, when Hybrid potential was applied, the magnetic moment did indeed
reach an integer number 5 and a half-metallic nature was achieved as shown in Section5.5
and Table(2). However, this value of magnetic moment still failed to match with the
conventional Slater Pauling rule[16] of µb = VT − 24, where VT are the total number of
valence electrons (sums to 23 in our systems). Instead, a new Slater Pauling rule was
proposed for Heusler alloys according to Ref([17]), which suggests µb = VT − 28, which
indeed matches with the value of 5 as reported in Table(2). This indicates that these
systems’ source of half-metallicity differs from the ordinary Heusler alloys.

Alloy Potential µb-Fe µb-Sc µb-Si/Ge/Sn µb-Interstitial µb-Total

Fe2ScSi PBE 0.53911 -0.07456 -0.02739 -0.03912 0.93716
mBJ 2.10227 -0.30946 -0.04293 -0.33822 3.51393
HSE 2.70182 -0.30626 -0.01474 -0.16774 4.91489

Fe2ScGe PBE 1.57538 -0.29068 -0.07458 -0.17791 2.60759
mBJ 2.20259 -0.47108 -0.04980 -0.30644 3.57787
HSE 2.78934 -0.37452 -0.01444 -0.18756 5.00215

Fe2ScSn PBE 1.92122 -0.38444 -0.05593 -0.26318 3.13889
mBJ 2.48792 -0.38679 -0.02411 -0.22489 4.34004
HSE 2.93707 -0.50682 -0.03459 -0.28492 5.04781

Table 2: Data for Magnetic Moment across PBE, mBJ and HSE potential

The magnetic moment for Fe2ScSi is slightly less than the predicted value of 5 BM,
which indicates that Fe2ScSi must not be perfectly half-metallic, as is observed in further
sections. On the other hand, the magnetic moment for Fe2ScGe and Fe2ScSn are perfectly
5 BM, and as a result, they are expected to exhibit half-metallic properties. This also
validates HSE potential, which indeed works best for systems with d-block elements and
Heusler alloys.

5.3 Mechanical Stability

Elastic constants are known as numbers that quantify the response of a particular mate-
rial to elastic or non-elastic deformation when a stress load is applied to that material.
The elastic constants of solids provide valuable information on their dynamic and me-
chanical properties. In particular, they provide information on the stiffness and stability
of materials.

5.3.1 Elastic constants

Discussing the mechanical stability and looking at the critical element determining the
strength and resistivity of Fe2ScZ (Z=Si; Ge and Sn) systems—defined by the atoms’
bonding nature, their structural forces, and the solid space between them—will help.
These systems differ in how they reflect external forces, allowing them to return to their
original form after removing the deforming force. Three separate elastic constants for the
cubic system are C11, C12, and C44. The crystal is reflected to unidirectional compression
by the coefficients C11 and C12, whereas the C44 constant is obtained from the solid’s
reflection under shear stress. The C11 values show the material’s length deformation.
Nonetheless, the material’s transverse expansion is processed by the C12. Furthermore,
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the C11 constant was calculated to determine the melting temperature of the compound’s
cubic structure, and all these elastic constants contributed to the definition of solids’
mechanical stability ([18]). The Born-Haung criteria[19] must be satisfied to ensure the
mechanical stability of the cubic crystal with respect to elastic constants Cij. These
criteria are as follows:

C44 > 0;
C11 − C12

2
> 0;B =

C11 + 2C12

3
> 0 (17)

Alloy C11 (kbar) C12 (kbar) C44 (kbar) BH (kbar) GH (kbar) YH (kbar) νH θD (K)

Fe2ScSi 2854.84325 1129.11838 935.68185 1704.36001 905.84071 2308.53797 0.27425 549.519
Fe2ScGe 2123.17973 920.17923 917.51292 1321.17940 774.64461 1943.87425 0.25469 459.100
Fe2ScSn 1173.19094 785.29502 786.18913 914.59366 451.60090 1156.71683 0.24980 330.248

Table 3: Data for Elastic properties, C11, C12, C44, Bulk Modulus (BH), Shear
Modulus (GH), Young’s Modulus (YH), Poisson Ratio (νH) and Debye temperature
(θD)

5.3.2 Ductility/Malleability

As Table 3 shows, all materials satisfy the stability criteria17 and are mechanically stable.
For detailed information on how the Bulk Modulus, Shear Modulus, Young’s Modulus,
Poisson ratio and Debye temperature were calculated from the elastic constants, you
can refer to [20]. However, our work was simplified due to the use of the thermos pw
package[21] included in QE, which calculated these constants for us.
As can be seen in Table 3, that hardness decreases as follows B(Fe2ScSi) >
B(Fe2ScGe) > B(Fe2ScSn). This reduction of the bulk modulus is attributed to the
interatomic interaction, i.e., the bonding nature between the atoms. Based on Pugh’s
criteria, an essential property that shall be evaluated is the matter’s ductile and brittle
behaviour. The ductile (higher B/G) and brittle (lower B/G) behaviours of the matters
are predicted by Pugh through the index B/G=1.75 ([22]). It is noteworthy as Table 3,
Pugh’s ratio value of B/G for Fe2ScSi and Fe2ScSN are 1.88 and 2.025, indicative of the
ductility nature with high malleability, while Fe2ScGe is brittle matter with a Pugh ratio
of 1.70.

5.3.3 Nature of Bonds

Additionally, the Cauchy’s pressure (C
′′
= C12−C44) plays a role in identifying the nature

of atomic bonding of matter and providing information about the kind of bonds for a
compound. The negativity of C” indicates that the bond dominates in a covalent nature,
while the ionic bonds are observed when C” is positive [20]. C

′′
values are 193.43653,

2.66631, and -0.89411 for Fe2ScSi, Fe2ScGe and Fe2ScSn respectively. Another important
parameter which helps to evaluate the bonding type is the Poisson’s ratio, such that it
is greater (less) than 0.25 for a typical ionic (covalent) compound[23]. Hence, according
to both parameters, we observe a decline in the ionic nature of bonding from Fe2ScSi to
Fe2ScSn.
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5.4 Dynamical Stability

Now, we move on to the dynamic aspect of the subject. For this purpose, the Quantum
Espresso software was employed to extract the phonon dispersion and related density of
states (DOS), see Fig. The positive amounts of all the phonon branches in Fig 18,19,20
hint at the robust stability of the bulk form along all the paths in the first Brillouin zone.
Likewise, all the phonon modes are entirely positive; thus, they should be a wholly stable
structure.
The phonon dispersion curve can be divided into the upper-frequency zone (UFZ) and
the lower-frequency zone (LFZ). The LFZ consists of 9 phonon modes, all of which are
optical and none are acoustic. The absence of acoustic modes implies that the material
would not support the usual vibrations that carry sound and heat efficiently at lower
frequencies. This could significantly impact the material’s thermal conductivity and
acoustic properties[24, 25].
Band gaps exist between the LFZ and UFZ in all three systems. This is due to the mass
difference of the Sc atom compared to Fe and Si/Ge/Sn. From the phonon DOS18,19,20,
it is found that Sc atom being lighter in mass than Fe and Ge/Sn contributes more in
the UFZ.

(a) (b)

Figure 18: Fe2ScSi (regular): (a) Phonon Bandstructure (b) Phonon DOS

(a) (b)

Figure 19: Fe2ScGe (regular): (a) Phonon Bandstructure (b) Phonon DOS
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(a) (b)

Figure 20: Fe2ScSn (regular): (a) Phonon Bandstructure (b) Phonon DOS
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5.5 Electronic Properties

(a) (b)

Figure 21: Fe2ScSi Bandstructure and DOS: (a) spin up (b) spin down

Bandstructure and DOS calculations were performed using PBE, mBJ and HSE potential
in WIEN2k for all three Heusler alloys and plotted. The spin-polarized calculations of
band structures for these alloys were defined along the high-symmetry directions in the
first BZ and are presented in Fig. 21,22,23 for Fe2ScSi, Fe2ScGe, and Fe2ScSn alloys.
For the band structure calculation, high-symmetry points W → L→ Γ → X → W → K
were considered while the Fermi energy level was set to be 0.0 eV.
These calculations are essential for demonstrating the contributed values of these materi-
als in spintronic and optoelectronic devices. In each of these band structures of minority
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spins (spin down), the top of the valence band is localized at the Γ symmetry point,
and the bottom of the conduction band is localized between the Γ− > X k-point. This
behaviour was observed for all the studied Heusler alloys except the mBJ run for Fe2ScSi,
where the valence band maxima (VBM) lies on the X k-point.

(a) (b)

Figure 22: Fe2ScGe Bandstructure and DOS: (a) spin up (b) spin down

A half-metallic nature is predicted for these alloys based on these band structures. The
up spin is metallic for all three alloys since the valence band cuts through the conduction
band. On the other hand, for the down spin configuration, the band gap is reported in
Table 4.
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(a) (b)

Figure 23: Fe2ScSn Bandstructure and DOS: (a) spin up (b) spin down
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Alloy Potential Eg(eV)

Fe2ScSi PBE 0.0899
mBJ 0.5189
HSE 0.5433

Fe2ScGe PBE 0.2443
mBJ 0.4079
HSE 0.2494

Fe2ScSn PBE 0.2133
mBJ 0.0275
HSE 0.1480

Table 4: Calculated Data for Bandgap in the minority spin

6 Conclusion

Density functional theory was studied from the basics, and its applications were explored
in the study of Heusler alloys for possible spintronic applications. WIEN2k, QE and
VESTA were used to visualize and simulate several properties for Fe2Sc-based Heusler
alloys. The crystal structure, electronic, elastic and dynamical properties of Fe2ScSi,
Fe2ScGe, and Fe2ScSn were studied. Results showed that the regular structure was more
stable than the inverse structure in all three cases, and hence, the studies were carried
out on the regular structure. A half-metallic nature is suggested for these Heusler alloys
based on analysis of band structures. We reported a metallic nature in the majority spin
and a half-metallic in the minority spin. However, further thermo-electric calculations
need to be performed to confirm the half-metallic nature of these alloys.
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